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Simulation of Hydrogen Combustion FKFS
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Why is 0D/1D simulation necessary to develop hydrogen engines?

Hydrogen engines can only be successful when combined with a very well-matched high
performance boosting system. This is due to the following reasons:

» Hydrogen combustion has a higher boost pressure demand compared to heavy-duty CI engines,
as it is necessary to operate the engine at lambda >= 2 and additional EGR even at high loads
(70-100%) in order to manage NO, emissions. Alternatively, stoichiometric operation would require
an operating mode switch, which would place very high demands on the boosting system’s
transient performance.

= High efficiency and early MFB50 timings of H, combustion reduce the available exhaust enthalpy
for the turbocharger. At the same time, very high boost pressure are required => challenging
situation

Assessment of turbocharger variants should always be assisted by 0d/1d simulations before and
during runs on the engine test bench. This is due to the following reasons:

» [tis nearly impossible to draw any meaningful conclusions for full engine design without
turbocharger matching. Turbocharger matching can be done even before the engine is on the test
bench by means of predictive burn rate models. 1d simulation is always mandatory for
turbocharger matching.

= The question if a 1-stage or 2-stage boosting system is more suitable for a heavy-duty H, engine
can also be investigated beforehand by means of 1d simulation.

» Transient 1d simulations allow to |dent|fy crltlcal transient situations in an early stage of
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Simulation of Hydrogen Combustion FKFS
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Overview

» The proven, tried and tested models for SI combustion can also be used for hydrogen combustion, but
several sub-models have to be adapted:

« UserCylinder ®@:
 quasidimensional burn rate model

« variables: flame surface, turbulence, flame Flame Front —
wrinkling and laminar flame speed S

Burned zone —; ~ Spark Plug

Unburned - I/ \I
Zone
» Sub-models that need to be adapted: | |
/~ « evaporation )
« calorics —p Fuel properties needed
* auto-Ignition behaviour
« laminar flame speed —p Model adaptions needed

\S -4
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Simulation of Hydrogen Combustion

Laminar flame speed and thickness

K no measurement data available for boundary \
conditions relevant to engine operation

* in the past: extrapolation with huge margins of
error

* now: reaction-kinetics-based approach with fuel-
specitic mechanism, calculated in a wide range of

boundary conditions s, - f(, T, A, Yegrs Yn20) J

+ Control / Automation
Cantera

Chemical Kinetics  Thermodynamics
« Transport Processes

| Reaction Mechanism

Temperature in unbunded mixture T, [K]

Mahir Tim Keskin 04.02.2021

1300

1100

900

700

500

300

RESEARCH IN MOTION.

" Tuylpzy from TPA
@ s, measurement data
available
e® smuEE ﬂ‘
A v
NP o ®In-cylinder |
< . “ .
Agguun® conditions
|
extrapolation
| | |
Y 4 | | |
o9 measurement
\ \ \
1 [ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160

Cylinder Pressure py [bar]



Simulation of Hydrogen Combustion FKFS
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Results from reaction-kinetics calculation
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Simulation of Alternative Fuels FKFS
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Huge gain in predictive capability due to new modelling approach
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Measurement data

single-cylinder engine based on MTU BR2000

= flat bowl piston Stoke x Bore 130 x 150 mm
Displacement 1991 cm?

= central spark plug position Connecting Rod Length 273 mm
Compresion Ratio 11,5:1

= 79 operating points Number of Valves 4
Max. Torque 350 Nm

» 2 different loads (approx. 7 bar and 11 bar) at the same Max. Engine Speed 1800 rpm
engine speed (1200 rpm) Max. Boost Pressure 5,0 bar
Max. Cylinder Pressure 180 bar

» includes ignition timing and EGR variations

= most other parameters are nearly constant (e.g.
lambda)
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Calibration UserCylinder®



Calibration Procedure FKFS
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Burn rate model

= (random) choice of one single operating point
» Automated optimisation of one single tuning parameter (defining the turbulence level)

= MFB50 from TPA is adopted by internal MFB50 controller
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Calibrated operating point

Comparison of measurement and simulation
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Worst Case Operating Points FKFS
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Comparison of measurement and simulation

Engine Speed [rpm] 1200 | A[] 1.84 Engine Speed [rpm] 1200 | A[] 1.85
IMEP [bar] 6.8 IP [°CA BFTDC] 16 IMEP [bar] 10.4 IP [°CA BFTDC] 9
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Resulting IMEP deviation: 0.22 bar Resulting IMEP deviation: 0.18 bar
Resulting peak pressure deviation: 2.30 bar Resulting peak pressure deviation: 0.20 bar
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Overview Model Performance

Validation based on variations, examples from approx. 80 operating points
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Ignition Timing Variation
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Simulation
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AGR-Variation
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Messung Simulation
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Load Variaiton FKFS
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Measurement Simulation
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Integral Values FKFS
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Comparison measurement/simulation for all investigated operating points

=  From left to right:
= 1stmeasurement series (OP1-12): Ignition timing variation, no EGR, lower load
= 27 measurement series (OP13-24): Ignition timing variation, low EGR, lower load
» 3" measurement series (OP25-36): Ignition timing variation, middle EGR, lower load
» 4t measurement series (OP37-50): Ignition timing variation, high EGR, lower load
= 5t measurement series (OP51-57): Ignition timing variation, no EGR, higher load
= 6™ measurement series (OP58-68): Ignition timing variation, middle EGR, higher load

= 7t measurement series (OP69-79): Ignition timing variation, high EGR, higher load
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Comparison Measurement — Simulation FKFS
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Mass of fuel burned 10%

= \leasurement == Simulation
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Comparison Measurement — Simulation FKFS

RESEARCH IN MOTION.

Mass of fuel burned 50%

= \leasurement == Simulation
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Comparison Measurement — Simulation FKFS
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Mass of fuel burned 75%

= \leasurement == Simulation
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Comparison Measurement — Simulation FKFS
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Peak Pressure

= \leasurement == Simulation
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Comparison Measurement — Simulation FKFS
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IMEP high pressure part

=Measurement==Simulation
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Final Combustion Phase FKFS
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Problematic measurement data

—Burn Rate —— Cum. Burn Rate
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Comparison Measurement — Simulation FKFS
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IMEP deviation

—Simulation
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Comparison Measurement — Simulation FKFS
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NO, model

= |\leasurement === Simulation
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Overall Assessment FKFS
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Model quality

= Calibrating one single operating point using one single tuning parameter that is kept constant is sufficient to get an

excellent match between measured and simulated burn rates

= The model reacts correctly to any changes in control parameters (both from a quantitative and a qualitative point of

view)

= |IMEP deviation are very low in spite of measurement data quality issues that lead to a systematic overestimation of

IMEP; simulated peak pressure is in very good agreement with measurement as well.

= The shape of the burn rate can be reproduced very well as well; the remaining, very minor deviations that can be
observed in the calibration point are mainly due to the problematic measurement data showing implausible behaviour

in the final phase of combustion.
= The NO, model is in good agreement with measurement as well

= Basic configuration for investigation of hydrogen combustion is ready to use
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Coming Up Soon FKFS
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Virtual development engine

= The calibration shown in this presentation will be

integrated for use in a heavy-duty engine model
(MAN D2676) by FKFS.

= This model can be used for concept studies

and virtual engine development.
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