

Together, we engineer the Mobility of tomorrow.

Services

FKFS

FKFS is both a development partner of the international automotive industry and an independent research institute. As an innovative partner, we benefit from our numerous test benches. With the help of our simulation procedures – including the application of AI – we are able to offer specialized services and consulting. Our skilled employees contribute their outstanding expertise to each project and consistently place customer benefit at the forefront of their work.

Competencies

- Aerodynamics
- **Driving dynamics &** chassis control
- **Acoustics & NVH**
- Comfort

③

Thermal management

Powertrain systems &-energies

- Powertrain technologies
- **Battery technologies**
- Renewable energy carriers
- Operating strategies

Software & Al

- Electrical system
- Charging technology
- Function development & application
- Functional safety

Automated driving

Smart mobility

Car2x

</>>

- Traffic modeling
- Mobility Concepts

- Environmental influences
- Quality & Reliability
- Certifications

Validation &

Verification

✓ == × == ✓ ==

Powertrain **Test Benches**

for drive systems

Wind Tunnels

Instrumentation & **Analytic Technology**

Simulation

Handling Roadway

Servo-hydraulic 4-post test stand

Accoustic test chamber

Roller Dynamometer Test **Facility**

Tire-Road Noise Test Bench & Noise Measurement Trailer

Stuttgart Driving Simulator

Climate Road-to-Rig

Climatic Chamber

Powertrain test benches

Hybrid Engine Test Bench

Development Test Bench for High-Speed Drives

NVH Single-Axis Test Bench

NVH Powertrain Test Bench

High-Performance Electrical Powertrain Test Bench

Multi-Configuration Powertrain Test Bench

Vehicle-Related **Powertrain Superstructures** **Vehicle Aeroacoustic Wind Tunnel**

Model Wind Tunnel

Thermal Wind Tunnel

Climatic Wind Tunnel

Driving Dynamics Instrumentation

Acoustic Measurement Equipment

Special Measurement Systems

Aerodynamic **Measurement Systems**

Thermal Comfort Manikin

OD/1D-Simulation incl. longitudinal dynamics

3D/CFD-Simulation-QuickSim

Life Cycle / Total Cost Analysis

Digital Competence Development

Artificial Intelligence & Data Science

Virtual Driving Characteristics Development

Simulative E/E Architecture **Optimizations**

Virtual Development

Longitudinal	Lateral	Vertical	
Belt speed		0,5 – 220 km/h	
Peak power/continuous power		220/140 kW	
Max. longitudinal force		6 kN	

Handling Roadway

The Handling Roadway is a new, innovative test bench concept enabling combined lateral, longitudinal and vertical dynamic operating states to be investigated under laboratory conditions. All four steel belt units can be steered and actuated vertically with high bandwidths. The vehicle is attached to the test bench in such a way that the heave, pitching and rolling motion can occur freely,according to the acting tire forces. The remaining degrees of freedom are calculated in the simulation, so that almost any maneuver can be driven.

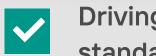
Application Examples

Driving dynamics standard maneuvers

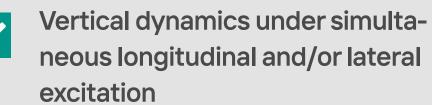
Investigating axles and steering systems

Vertical dynamics under simultaneous longitudinal and/or lateral excitation

Designing control systems


Powertrain investigations

Handling Roadway


The Handling Roadway is a new, innovative test bench concept enabling combined lateral, longitudinal and vertical dynamic operating states to be investigated under laboratory conditions. All four steel belt units can be steered and actuated vertically with high bandwidths. The vehicle is attached to the test bench in such a way that the heave, pitching and rolling motion can occur freely, according to the acting tire forces. The remaining degrees of freedom are calculated in the simulation, so that almost any maneuver can be driven.

Application Examples

Driving dynamics standard maneuvers

Designing control systems

Powertrain investigations

Longitudinal	Lateral	Vertical
Max. vertical dis	splacement	±75 mm
Max. vertical acceleration		7 g
Max. vertical force		15 kN
Vertical excitati	Vertical excitation bandwith	

Handling Roadway

The Handling Roadway is a new, innovative test bench concept enabling combined lateral, longitudinal and vertical dynamic operating states to be investigated under laboratory conditions. All four steel belt units can be steered and actuated vertically with high bandwidths. The vehicle is attached to the test bench in such a way that the heave, pitching and rolling motion can occur freely,according to the acting tire forces. The remaining degrees of freedom are calculated in the simulation, so that almost any maneuver can be driven.

Application Examples

Driving dynamics standard maneuvers

Investigating axles and steering systems

Vertical dynamics under simultaneous longitudinal and/or lateral excitation

Designing control systems

Powertrain investigations

Maximum stroke ± 125 mm	 ± 63 kN	Maximum force
	± 125 mr	Maximum stroke
Frequency range 0 – 200 Hz	0 – 200	Frequency range

Servo-Hydraulic 4-Post Test Bench

The servo-hydraulic 4-post test bench at FKFS enables vertical excitation at all four wheels of a vehicle. The posts can be equipped with linear guides in order to avoid lateral force components acting on the wheels.

Application Examples

Testing of the durability of individual components

Investigation of e.g. squeak and rattle noise

Simulation of rolling noise excitation in the vehicle (up to approx. 150 Hz)

Comfort testing (e.g. engine vibration or microjitter in convertibles)

Max. wheelbase	4100 mm	
Min. wheelbase	1500 mm	
Max. track width	2000 mm	
Min. track width	900 mm	

Servo-Hydraulic 4-Post Test Bench

The servo-hydraulic 4-post test bench at FKFS enables vertical excitation at all four wheels of a vehicle. The posts can be equipped with linear guides in order to avoid lateral force components acting on the wheels.

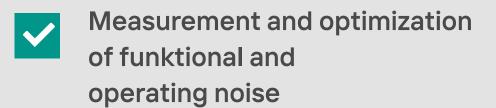
Application Examples

Testing of the durability of individual components

Investigation of e.g. squeak and rattle noise

Simulation of rolling noise excitation in the vehicle (up to approx. 150 Hz)

Comfort testing (e.g. engine vibration or microjitter in convertibles)


Acoustic Test Chamber internal dimensions (I x w x h)	9 m x 5 m x 4 m
lower frequency limit	125 Hz

Acoustic Test Chamber

An anechoic test chamber equipped with broad-band compact absorbers (semi-anechoic chamber) is available for noise measurement and noise optimization of vehicles, vehicle subsystems and other devices. The chamber is completely decoupled from the surrounding building and features an exhaust extraction system.

Application Examples

Localization of sound sources (e.g. with microphone arrays)

General

	2-axle parting roll
Speed	300 km/h
Power	260 kW each
Max. axle load	2500 kg

Roller Dynamometer Test Facility: Performance role

At test speeds of up to 300 km/h, it is used for dynamic and static power measurement. In addition, the test bench guarantees maximum measurement accuracy and reproducibility thanks to its active measurement of drag performance. The rolling behavior of the tire is similar to that on the road. Operating modes such as load simulation including optional modules for recording external measurement data, driving cycles etc. are possible. The test track is equipped with an airstream fan and conditioned air to simulate road driving under realistic conditions.

Application Examples

Performance measurement

Exhaust-gas measurement

Constant drive

Various driving cycles for vehicle application under reproducible conditions

Use of non-vehicle-integrable measurement technology on a moving vehicle

Tire-Road Noise Test Bench & Noise Measurement Trailer

FKFS investigates tire-road noise of vehicles not only by far field measurements using microphones at the side of the road. FKFS investigates tire-road noise also by means of a specially developed trailer. In this, the noise can be recorded with several microphones around the tire in the close range. Background noise from outside the trailer is suppressed to the greatest possible extent. Based on these tire-road noise measurements and by using the tire-road noise test bench developed at FKFS, it is possible to determine the contribution of the air-borne tire-road noise to the interior noise of a vehicle in an isolated way.

Application Examples

Recording the tire road noise directly at the point of origin

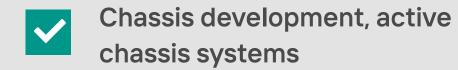
Investigation of the radiation behavior of the tire-road noise

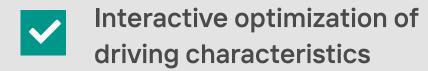
Determination of the tire road noise contribution to the interior noise

Technical Data 2

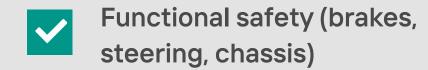
Longitudinal and lateral movements up to 8 m/s²

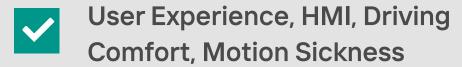
Yawing movements +/- 160°


360° visualisation


Spatial sound- and NVH-system

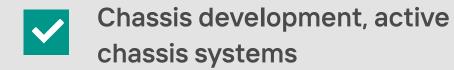
Steering wheel and brake pedal force simulation

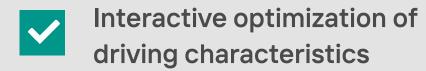

Stuttgart Driving Simulator


With its 9-axis motion system, which is unique in the European research landscape, the Stuttgart driving simulator enables the realistic representation of interactive and autonomous driving scenarios in the city, on highways, country roads and PGs. In addition to expert and test person studies for development and research, we offer a wide range of consulting services, e.g. the use case-based design of driving simulators and simulator centers for customers, motion cueing algorithms, scenario design, radar/lidar sensor simulation and software integration.

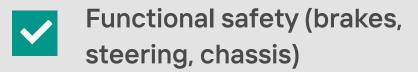
Technical Data 2

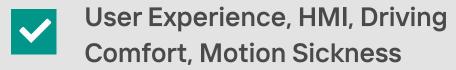
Full vehicle mockups (cars and trucks)


HMI- and Autonom- Mockup (ID Buzz)


Customized scenario and traffic simulation

Eye- and Bodytracking, EEG, EMG, heart rate etc.


Stuttgart Driving Simulator


With its 9-axis motion system, which is unique in the European research landscape, the Stuttgart driving simulator enables the realistic representation of interactive and autonomous driving scenarios in the city, on highways, country roads and PGs. In addition to expert and test person studies for development and research, we offer a wide range of consulting services, e.g. the use case-based design of driving simulators and simulator centers for customers, motion cueing algorithms, scenario design, radar/lidar sensor simulation and software integration.

Environmental simulation	-30 °C bis +50°C
Battery simulation	822 kW (1000 V, 1200A)
4 highly dynamic wheel machines	4 x 650 kW , 10kHz
Fan	210 km/h

Climate Road-to-Rig

This test bench enables environmental simulations on battery-powered electric vehicles (BEV) in the temperature range from -30°C to +50°C. It enables research and testing of electric powertrains in the vehicle. GPS spoofing and the CarMaker route simulation program make it possible to simulate any route. A battery simulation offers the possibility of simulating charging processes under a wide range of environmental conditions and to investigate the reactions of the vehicle systems.

A fan simulates the airstream up to a speed of 210 km/h.

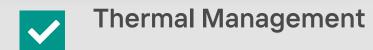
Application Examples

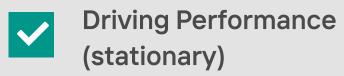
Module testing during operation

Performance measurement (-30°C – 50°C)

Battery test during extreme requirements of load & temperature

Method development for integration and development of components




menter

Climatic Chamber

Our climate chamber enables environmental tests under extreme conditions. Whether heat, cold, humidity or solar exposure – with flexible control of all climate climate parameters, realistic scenarios can be reproduced for the development and validation of modern vehicles. The combination of precise climate simulation and high-performance testing technology offers ideal conditions for reliable and reproducible test results – regardless of the type of powertrain.

Application Examples

Thermal Validation

Windshield de-icing/Defogging

Investigations at extreme cold

Dimensions & conditions	1-axle-dynamometer	
Max. continuous power	260 kW	
Max. traction force roller	6 kN	
Max. roller speed	200 km/h	
Max. wind speed	120 km/h	
Nozzle area	0,48 m² (0,8 x 0,6)	

Climatic Chamber

Our climate chamber enables environmental tests under extreme conditions. Whether heat, cold, humidity or solar exposure – with flexible control of all climate climate parameters, realistic scenarios can be reproduced for the development and validation of modern vehicles. The combination of precise climate simulation and high-performance testing technology offers ideal conditions for reliable and reproducible test results – regardless of the type of powertrain.

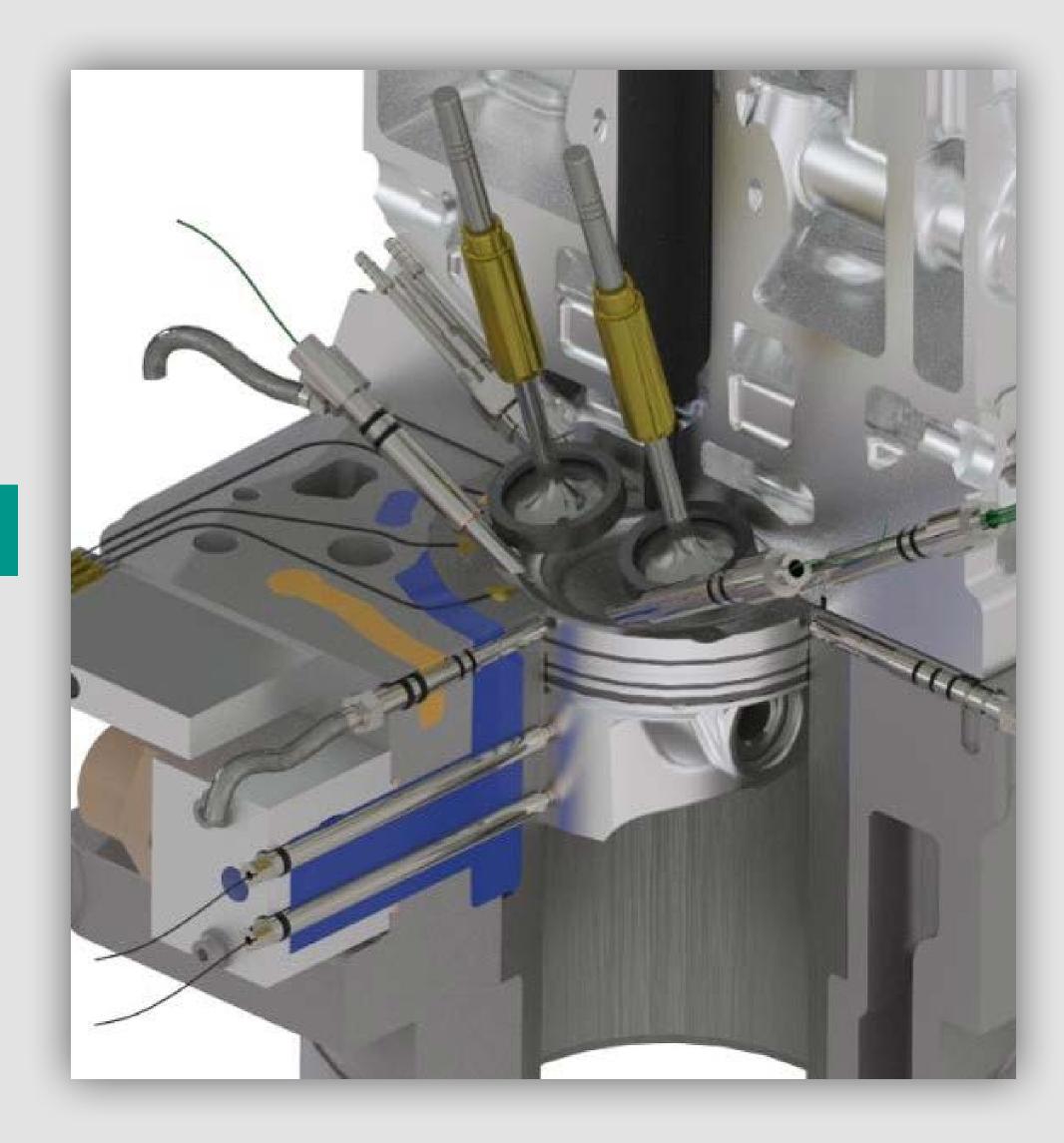
Application Examples

Thermal Management

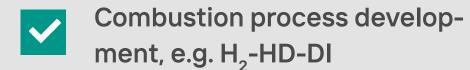
Driving Performance (stationary)

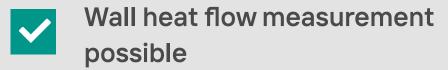
Climate Comfort

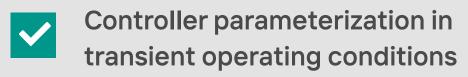
Thermal Validation

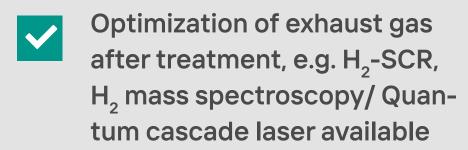


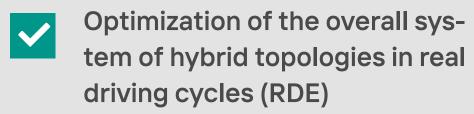
Windshield de-icing/Defogging


Investigations at extreme cold




Engine test benches for powertrain systems (hydrogen engines)


The development of hydrogen-powered internal combustion engines places high demands on infrastructure and measurement technology. FKFS has has various test benches for single-cylinder units and full engines that run on hydrogen. These enable both the development of new combustion processes on externally charged, highly instrumented research engines, the operation of near-series full engines and the optimization of special exhaust gas aftertreatment systems adapted to the requirements of hydrogen combustion.



General	Loading system	Battery simulation
Туре		ECODyn 470 H (Fa. DASYM)
Automation		Morphee 2 (Fa. FEV)
Measurement technology for electrical components		Yokogawa WT1804E Power Analyzer
Measurement technology for emissions		Horiba Mexa One (Rohabgas) + Horiba Mexa One (CVS)

Hybrid Engine Test Bench

The Hybrid Engine Test Bench The hybrid engine test bench enables the investigation of combined powertrains consisting of thermal energy converters and electric motors. The vehicle and driver simulation xMot from FEV GmbH allows the representation of any vehicle models and driving routes on the test bench. A CVS system enables the summary emission measurement as prescribed in certification measurements.

Application Examples

Measurement of powertrains with simulation of the vehicle environment

Development of serial hybridized powertrains

Max. output	470 kW
Max. speed	9000 min ⁻¹
Max. torque	990 Nm
Execution	Asychronous machine

Hybrid Engine Test Bench

The Hybrid Engine Test Bench The hybrid engine test bench enables the investigation of combined powertrains consisting of thermal energy converters and electric motors. The vehicle and driver simulation xMot from FEV GmbH allows the representation of any vehicle models and driving routes on the test bench. A CVS system enables the summary emission measurement as prescribed in certification measurements.

Application Examples

Measurement of powertrains with simulation of the vehicle environment

Development of serial hybridized powertrains

Max. output		300 kW
Voltage range	2	0-1000 V DC
Max. power		±1200 A DC

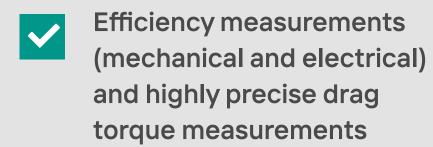
Hybrid Engine Test Bench

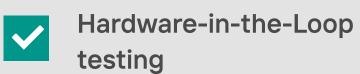
The Hybrid Engine Test Bench The hybrid engine test bench enables the investigation of combined powertrains consisting of thermal energy converters and electric motors. The vehicle and driver simulation xMot from FEV GmbH allows the representation of any vehicle models and driving routes on the test bench. A CVS system enables the summary emission measurement as prescribed in certification measurements.

Application Examples

Measurement of powertrains with simulation of the vehicle environment

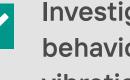
Development of serial hybridized powertrains


Input eDrive 2	Battery simulator
1!	57 kW
3	00 Nm
1(3.000 1/min
	15


Development Test Bench for High-Speed Drives

The test bench enables the testing of eDrives in very early stage of development. For this it provides high speed up to 24.000 rpm but low torque. Typical applications are highly precise drag torque measurements and thermal examinations under the influence of rotational speed. In order to achieve the maximum possible flexibility during testing, the test bench has a modular and flexible design. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

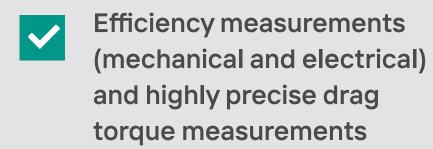
Application examples



Wide range of special tests

Investigation of dynamic behavior as well as thermal and vibrational effects

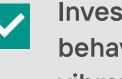
Testing of durability, application and function


Power, max.	35 kW
Torque, max.	14 Nm
Speed, max.	24.000 1/min

Development Test Bench for High-Speed Drives

The test bench enables the testing of eDrives in very early stage of development. For this it provides high speed up to 24.000 rpm but low torque. Typical applications are highly precise drag torque measurements and thermal examinations under the influence of rotational speed. In order to achieve the maximum possible flexibility during testing, the test bench has a modular and flexible design. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

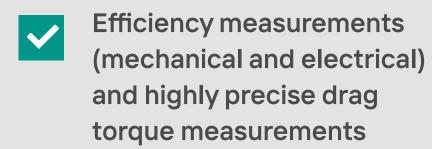
Application examples



Wide range of special tests

Investigation of dynamic behavior as well as thermal and vibrational effects

Testing of durability, application and function


Input eDrive 1	Input eDrive 2	Battery simulator
Power, max.	1	160 kW
Voltage range		1.000 V
Current, max.	1.600 A	
Dynamic	2	.000 V/ms

Development Test Bench for High-Speed Drives

The test bench enables the testing of eDrives in very early stage of development. For this it provides high speed up to 24.000 rpm but low torque. Typical applications are highly precise drag torque measurements and thermal examinations under the influence of rotational speed. In order to achieve the maximum possible flexibility during testing, the test bench has a modular and flexible design. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

Application examples

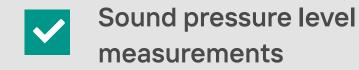
Hardware-in-the-Loop testing

✓

Wide range of special tests

Investigation of dynamic behavior as well as thermal and vibrational effects

Testing of durability, application and function


Technical Data 1 Tech	nical Data 2
	<u>.</u>
Туре	A2-NVH-Axis Test Bench
Speed	400 km/h
Power per axle	1100 kW (10 sec.)
Wheel torque max.	5500 Nm (10 sec.)
Battery simulation performan	ce 540 kW (10 sec.)

NVH Single-Axis Test Bench

Drive noises are an essential part of the perception of a vehicle.

On the full low-reflection NVH axle test bench, all drive units from inverter e-motor transmissions to combustion engines with transmissions and hybrid components can be tested. Vibrations and radiated airborne noise are measured and analyzed to ensure the desired noise perception.

Application Examples

Acceleration measurements

Laser vibrometric measurements

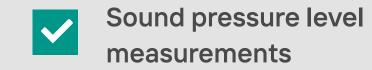
Beamforming-/
Holography measurements

Rotational uniformity measurements

Standard FFT analysis

Wavelet analysis

Digital order analysis


ehcnical Data 1	Technical Data 2	
Voltage battery simul	ation up to 1000	V
Maximum current	1600 A	
Fuel supply	Gasoline, d special fue	liesel and liquid els
Measurement techno		s airbone sound, els structural sound,

NVH Single-Axis Test Bench

Drive noises are an essential part of the perception of a vehicle.

On the full low-reflection NVH axle test bench, all drive units from inverter e-motor transmissions to combustion engines with transmissions and hybrid components can be tested. Vibrations and radiated airborne noise are measured and analyzed to ensure the desired noise perception.

Application Examples

Acceleration measurements

Laser vibrometric measurements

Beamforming-/
Holography measurements

Rotational uniformity measurements

Standard FFT analysis

Wavelet analysis

Digital order analysis



Туре	NVH Engine Test Bench
Speed	530 kW
Torque, max.	1500 Nm
Speed, max.	7000 min ⁻¹
Fuel supply	Gasoline, diesel, liquid special fuels

NVH Engine Test Bench

A fully low-reflection test bench is available for acoustic tests on combustion engines. Standard powertrains and front-transverse configurations are possible. In addition to airborne and structure-borne noise, torsional vibrations or combustion excitation can also be investigated.

Application Examples

Acceleration measurements

Beamforming-/
Holography measurements

Rotational uniformity measurements

Standard FFT analysis

Work leeway resolved analysis

Digital order analysis

Input eDrive	Output	Battery	
Power, max.	700	kW	
Torque, max.	1.00	0 Nm	
Speed, max.	20.000 1/min		
Dynamic	69.000 1/min/s		

High-Performance Electric Powertrain Test Bench

The test bench enables the testing of complete powertrains or individual components (e.g. eDrives or gearboxes) from electric vehicles.

The driving resistances are simulated by two highly dynamic eDrives. The input is provided either by the drive of the device under test (DUT) or a dynamic eDrive of the test bench. A highly dynamic high-voltage battery simulator is used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

Application Examples

Initial commissioning

Wide range of special tests

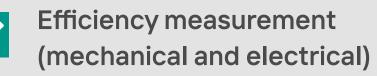
Efficiency measurement (mechanical and electrical)

Testing of durability, application and function

Hardware-in-the-Loop testing

Investigation of dynamic behaviour as well as thermal and vibration effects

Power, max.	720 kW
Torque, max	6.000 Nm
Speed, max.	3.000 1/min
Dynamic	37.000 1/min/s


High-Performance Electric Powertrain Test Bench

The test bench enables the testing of complete powertrains or individual components (e.g. eDrives or gearboxes) from electric vehicles.

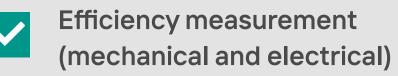

The driving resistances are simulated by two highly dynamic eDrives. The input is provided either by the drive of the device under test (DUT) or a dynamic eDrive of the test bench. A highly dynamic high-voltage battery simulator is used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

Application Examples

Wide range of special tests

Investigation of dynamic behaviour as well as thermal and vibration effects

Power, max.	1.160 kW	
Voltage range	O1.000 V	
Current, max.	1.600 A	
Dynamic	2.000 V/ms	


High-Performance Electric Powertrain Test Bench

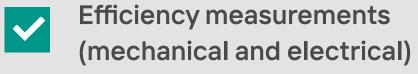
The test bench enables the testing of complete powertrains or individual components (e.g. eDrives or gearboxes) from electric vehicles.

The driving resistances are simulated by two highly dynamic eDrives. The input is provided either by the drive of the device under test (DUT) or a dynamic eDrive of the test bench. A highly dynamic high-voltage battery simulator is used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

Application Examples

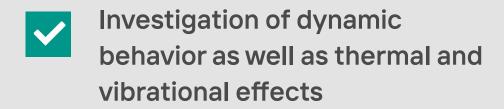
Wide range of special tests

Investigation of dynamic behaviour as well as thermal and vibration effects

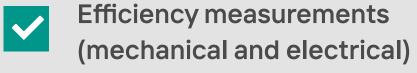


Input eDrive 1	Input 2	Output	Battery	
Power, max.	600 kV	V		
Torque, max.	1.300 N	1.300 Nm		
Speed, max.	8.000	8.000 1/min		
Dynamic	113.000	113.000 1/min/s		

The test bench enables testing of complete powertrains up to 4WD configurations or individual components (e.g. eDrives or gearboxes) from conventional, hybrid and electric vehicles. The driving resistances are simulated by four dynamic eDrives. The input is carried out either by the device under test (DUT) or a dynamic eDrive of the test bench. Highly dynamic high-voltage battery simulators are used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

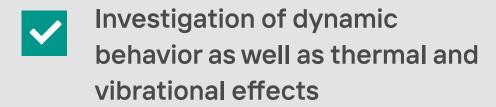


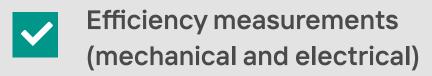


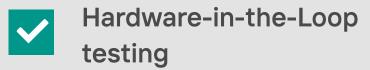


	Output	Battery
600 kW	1	
520 Nm		
20.000	1/min	
	520 Nm	600 kW 520 Nm 20.000 1/min

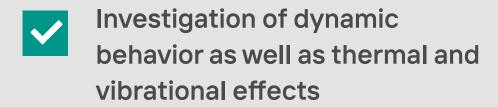
The test bench enables testing of complete powertrains up to 4WD configurations or individual components (e.g. eDrives or gearboxes) from conventional, hybrid and electric vehicles. The driving resistances are simulated by four dynamic eDrives. The input is carried out either by the device under test (DUT) or a dynamic eDrive of the test bench. Highly dynamic high-voltage battery simulators are used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.

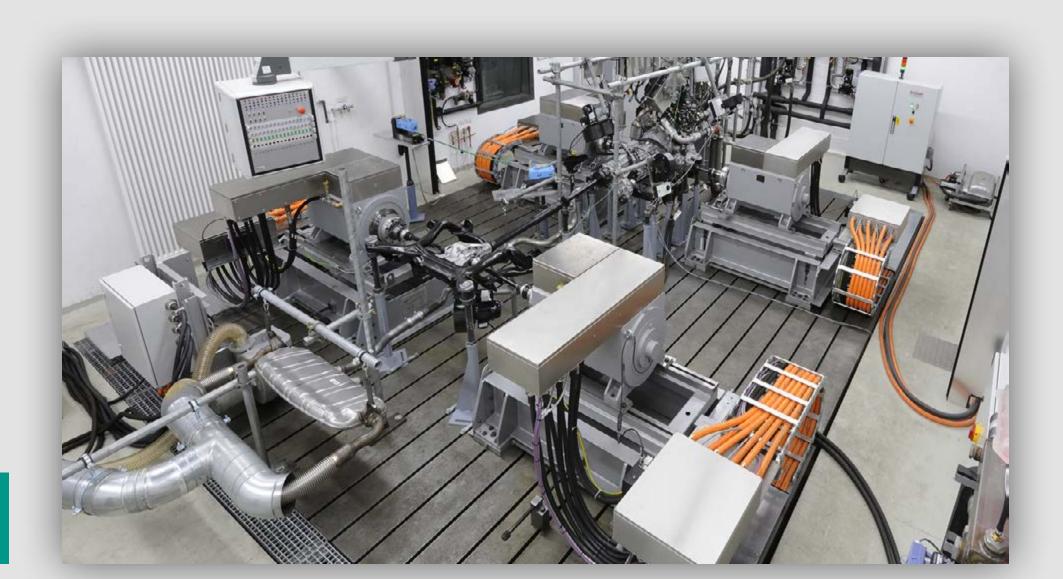


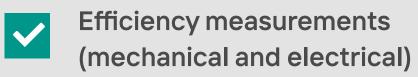


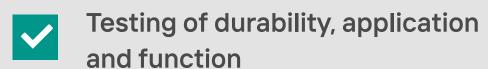

450 kW
4.500 N.
4.500 Nm
3.000 1/min
40.000 1/min/s

The test bench enables testing of complete powertrains up to 4WD configurations or individual components (e.g. eDrives or gearboxes) from conventional, hybrid and electric vehicles. The driving resistances are simulated by four dynamic eDrives. The input is carried out either by the device under test (DUT) or a dynamic eDrive of the test bench. Highly dynamic high-voltage battery simulators are used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.



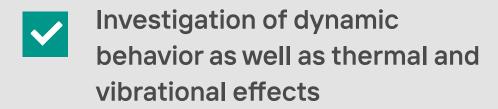


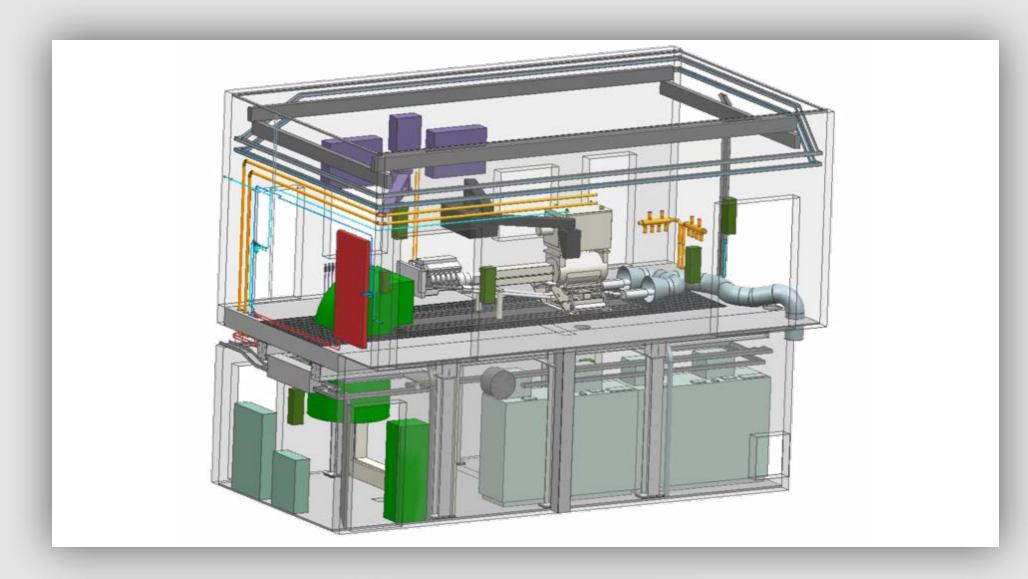


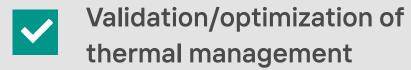


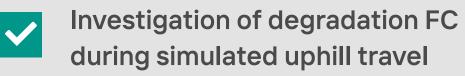
Power max.		1.160 kW	
Voltage range		01.000	V
Current, max.		1.600 A	
Dynamic		2.000 V	/ms

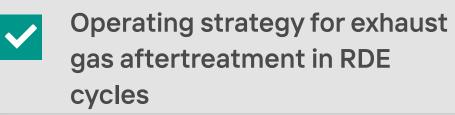
The test bench enables testing of complete powertrains up to 4WD configurations or individual components (e.g. eDrives or gearboxes) from conventional, hybrid and electric vehicles. The driving resistances are simulated by four dynamic eDrives. The input is carried out either by the device under test (DUT) or a dynamic eDrive of the test bench. Highly dynamic high-voltage battery simulators are used to supply the DUT with electrical energy. A comprehensive range of test bench equipment is available for operating and analysing modern drivetrains.





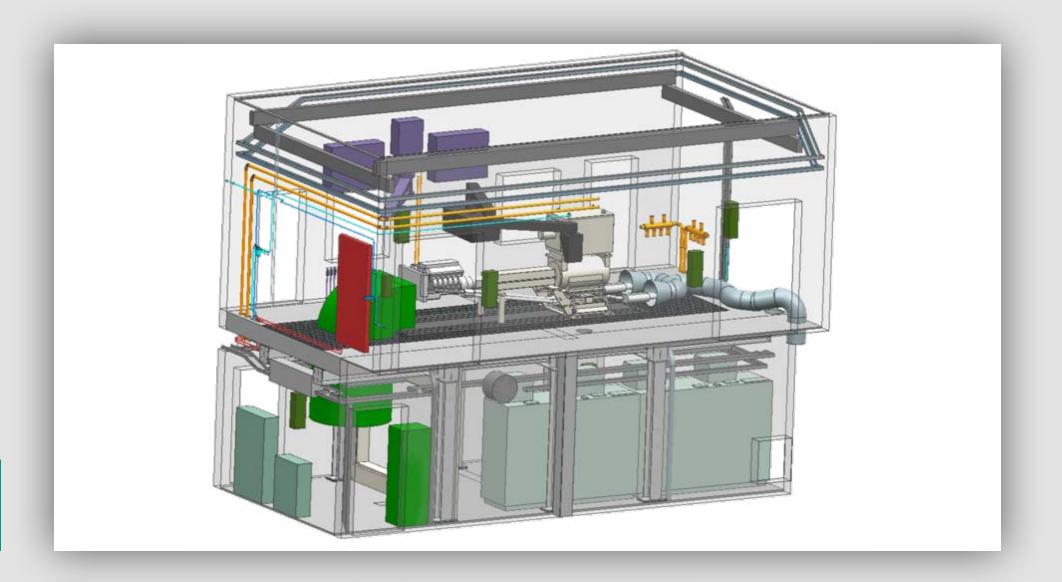



echnical Data 1	Technical Data 2
Туре	A1 test stand with blow-in
Wind speed up to	180 km/h
Max. volume flow	187.000 m³/h
Blower Power	160 kW


Similar to the vehicle Drive train superstructures

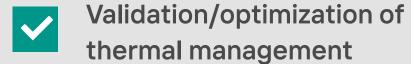
The targeted dissipation of thermal energy is of great importance for conventional drives powered by renewable fuels, as well as for hydrogen fuel cell systems and battery electric drives. The FKFS therefore has test benches that allow the vehicle-related construction of drives (H2ICE, BEV, FCV). These are characterized by a blowing of the drive unit proportional to the vehicle speed and thus allow the experimental representation of realistic component temperatures.

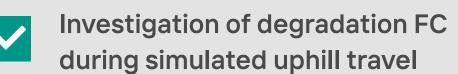
Application Examples

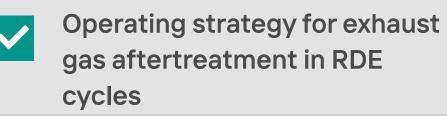


Emission-optimized operating strategy for hybrid concepts

Pre-emission EU7 legislation




Max. power	470 kW	
Max. torque	990 Nm	
Max. speed	9.000 min ⁻¹	


Similar to the vehicle Drive train superstructures

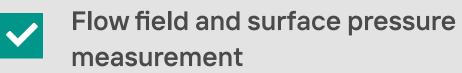
The targeted dissipation of thermal energy is of great importance for conventional drives powered by renewable fuels, as well as for hydrogen fuel cell systems and battery electric drives. The FKFS therefore has test benches that allow the vehicle-related construction of drives (H2ICE, BEV, FCV). These are characterized by a blowing of the drive unit proportional to the vehicle speed and thus allow the experimental representation of realistic component temperatures.

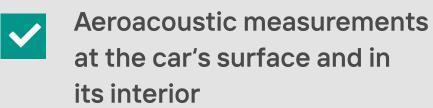
Application Examples

Emission-optimized operating strategy for hybrid concepts

Pre-emission EU7 legislation



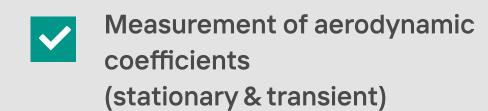

Dimensions 1	Dimensions 2	Sound-pressure level
Dimensions of nozzle (wxh)		5,8 m x 3,87 m
Exit area of nozzle		22,45 m ²
Contraction ratio		4,41
Length of open jet test section		9,95 m

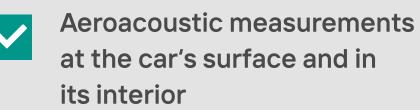

Vehicle Aeroacoustics Wind Tunnel

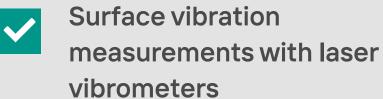
The FKFS aeroacoustic vehicle wind tunnel (Göttingen-type wind tunnel) is one of the most modern of its kind in Europe for aerodynamic testing of cars, vans and racing vehicles. In addition to acoustic methods, other extensive test facilities are available for measuring forces, pressures and speeds as well as for flow visualization. The standard use of a 5-belt system is to simulate road travel with rotating wheels and moving ground in the vehicle wind tunnel.

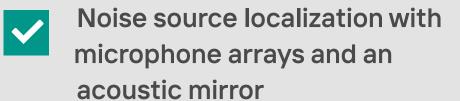
Application Examples

Surface vibration measurements with laser vibrometers


Noise source localization with microphone arrays and an acoustic mirror


Dimensions 1	Dimensions 2		Sound-pressure level	
Diameter of axial fan		7,1 m		
Operating output		3,3 MW (335 1/m)		
Max. flow velocity		260 km/h		

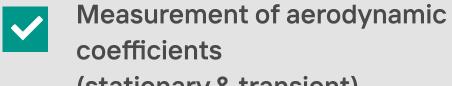

Vehicle Aeroacoustics Wind Tunnel


The FKFS aeroacoustic vehicle wind tunnel (Göttingen-type wind tunnel) is one of the most modern of its kind in Europe for aerodynamic testing of cars, vans and racing vehicles. In addition to acoustic methods, other extensive test facilities are available for measuring forces, pressures and speeds as well as for flow visualization. The standard use of a 5-belt system is to simulate road travel with rotating wheels and moving ground in the vehicle wind tunnel.

Dimensions 1 Dimensions 2

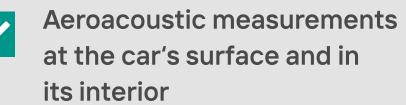
Sound-pressure level

Sound-pressure level of empty test section at 140 km/h


- Out-of-Flow

64,7 dB(A)

Vehicle Aeroacoustics Wind Tunnel

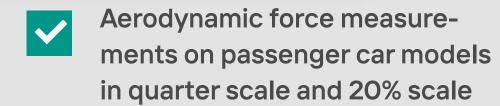

The FKFS aeroacoustic vehicle wind tunnel (Göttingen-type wind tunnel) is one of the most modern of its kind in Europe for aerodynamic testing of cars, vans and racing vehicles. In addition to acoustic methods, other extensive test facilities are available for measuring forces, pressures and speeds as well as for flow visualization. The standard use of a 5-belt system is to simulate road travel with rotating wheels and moving ground in the vehicle wind tunnel.

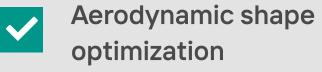
Application Examples

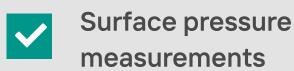
(stationary & transient)

Surface vibration measurements with laser vibrometers

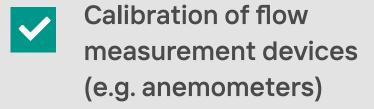
Noise source localization with microphone arrays and an acoustic mirror

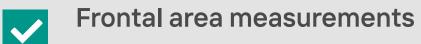



Dimensions 1 D	imensions 2
Dimensions of nozzle (wxh)	1,575 m x 1,05 m
Exit area of nozzle	1,654 m ²
Length of open-nozzle test section	2,585 m
Max. flow velocity	288 km/h
Turn table diameter	2080 mm

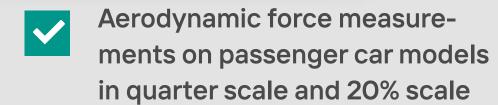

Model Wind Tunnel

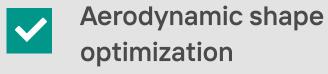
For the aerodynamic investigation of vehicle models, the FKFS a 1:4/1:5 model wind tunnel (Göttingen-type wind tunnel) with a 5-belt system for simulating the road surface and rotating wheels. Flow field measurements with Particle Image Velocimetry (PIV) or single and multi-hole probes can carried out with the traversing device. Facilities for model preparation and modelling, as well as the possibility of model digitization using 3D surface scans are also part of the system.


Application Examples



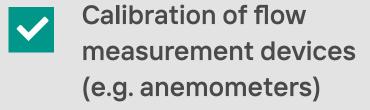
3D surface scans




Dimensions 1	Dimensions 2
Center belt length	1700 mm
Available center belt widths	225 mm / 250 mm / 312 mm
Available wheel drive unit belts widths	69 mm / 85 mm / 115 mm
Maximum wheel base	800 mm

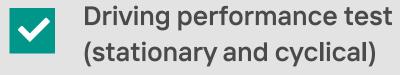
Model Wind Tunnel

For the aerodynamic investigation of vehicle models, the FKFS a 1:4/1:5 model wind tunnel (Göttingen-type wind tunnel) with a 5-belt system for simulating the road surface and rotating wheels. Flow field measurements with Particle Image Velocimetry (PIV) or single and multi-hole probes can carried out with the traversing device. Facilities for model preparation and modelling, as well as the possibility of model digitization using 3D surface scans are also part of the system.


Application Examples

Frontal area measurements

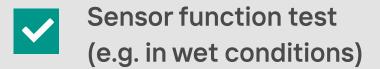
3D surface scans


Dimensions 2-axle-dynamometer	2-axl-d. Air.
Test section (Ixwxh)	15,8 m x 6,8 m x 5,5 m
Entrance (wxh)	2,9 m x 4,0 m
Dynamometer diameter	1,6 m
Dynamometer speed	max. 300 km/h
Driving/braking power	respectively max. 300 kW front and 500 kW rear.

Thermal Wind Tunnel

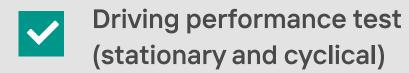
The FKFS thermal wind tunnel is a high-performance 2-axis roller test bench with closed air flow. A large number of different complete vehicle tests can be carried out here regardless of the season and weather conditions and driving tests can be realistically simulated. Typical areas of application include performance and thermal management tests, pollution experiments and brake and component function tests. Various options for irrigation, including visualization, enable many special uses.

Application Examples



Pollution investigation

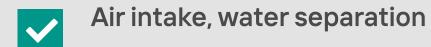
Break performance (dry and wet)

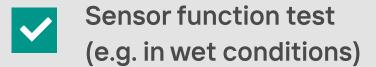

Traction force when under braking The test bench has two identical sets of rollers (for the front and rear axles). The rollers can be moved in the longitudinal direction.

Thermal Wind Tunnel

The FKFS thermal wind tunnel is a high-performance 2-axis roller test bench with closed air flow. A large number of different complete vehicle tests can be carried out here regardless of the season and weather conditions and driving tests can be realistically simulated. Typical areas of application include performance and thermal management tests, pollution experiments and brake and component function tests. Various options for irrigation, including visualization, enable many special uses.

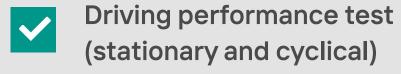
Application Examples





Pollution investigation

Break performance (dry and wet)


Dim. 2-axle-dyn.	2-axle-dyn.	Air path	
	large noz	zle s	small nozzle
Air flow velocity	max. 210	km/h n	max. 240 km/h
Nozzle cross secti	on 6 m² (2,45	5 x 2,45) 4	l m² (2,45 x 1,60)
Air temperature re	gulation between 20	°C and 50°	°C.
Deviating operating	g conditions on requ	uest.	

Thermal Wind Tunnel

The FKFS thermal wind tunnel is a high-performance 2-axis roller test bench with closed air flow. A large number of different complete vehicle tests can be carried out here regardless of the season and weather conditions and driving tests can be realistically simulated. Typical areas of application include performance and thermal management tests, pollution experiments and brake and component function tests. Various options for irrigation, including visualization, enable many special uses.

Application Examples

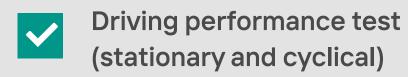
Pollution investigation

Break performance (dry and wet)

Wiper function test, wiper motor design

Air intake, water separation

Sensor function test (e.g. in wet conditions)


Dimensions 2-axle-dynamometer	2-axl-d. Air.
Test section (Ixwxh)	15,8 m x 11,6 m x 7,5 m
Entrance (wxh)	4 m x 4 m
Dynamometer diameter	2 m
Dynamometer speed	max. 280 km/h
Driving/braking power	front 300 kW rear 450 kW

Climatic Wind Tunnel

The Climatic Wind Tunnel is a closed wind tunnel of Göttingen design with a powerful 2-axis roller test rig. A large number of different vehicle tests can be carried out regardless of the season and weather conditions and driving tests can be realistically simulated. The climatic wind tunnel is primarily used for thermal tests in the temperature range between 10 and 55 °C.

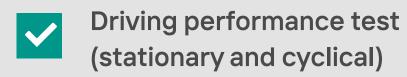
Application Examples

Climate Comfort

Thermal Validation

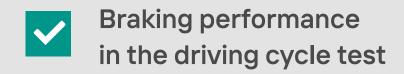
Braking performance in the driving cycle test

HV charging tests

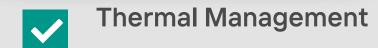

Dim. 2-axle dyn.	2-axle-dynamometer	Air.
Traction in breaking	front 13 kN rear 2	26 kN
The test bench has two	a identical cate of rollars (for t	bo front and
rear axles).	o identical sets of rollers (for t	ne front and
	2,3 – 6,9 m	ne front and

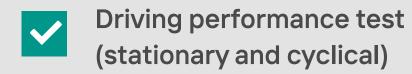
Climatic Wind Tunnel

The Climatic Wind Tunnel is a closed wind tunnel of Göttingen design with a powerful 2-axis roller test rig. A large number of different vehicle tests can be carried out regardless of the season and weather conditions and driving tests can be realistically simulated. The climatic wind tunnel is primarily used for thermal tests in the temperature range between 10 and 55 °C.

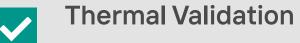

Application Examples

Climate Comfort

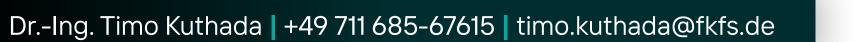



	truc	ck nozzle	car nozzle
Air flow velocity	max	x. 135 km/h	max. 265 km/h
Nozzle cross section	12 n	n² (3 x 4)	4,7 m ² (2,3 x 3,05)
Air temperature reg	lation betwee	n 10 °C and 5	5°C

Climatic Wind Tunnel


The Climatic Wind Tunnel is a closed wind tunnel of Göttingen design with a powerful 2-axis roller test rig. A large number of different vehicle tests can be carried out regardless of the season and weather conditions and driving tests can be realistically simulated. The climatic wind tunnel is primarily used for thermal tests in the temperature range between 10 and 55 °C.

Application Examples


Climate Comfort

Braking performance in the driving cycle test

HV charging tests

Inertial measurement sys (gyro-stabilized platform	
Contactless speed measurement	Acceleration sensors
differential GPS (dGPS)	Cable-actuated travel sensors

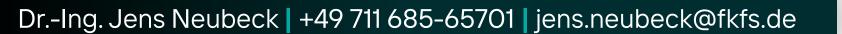
Driving Dynamics Instrumentation

FKFS has a comprehensive, mobile and up-to-date selection of instrumentation for extensive driving dynamics and vehicle testing. The equipment is constantly being expanded and modernized so that it always remains up-to-date and efficient. A selection of different systems is available for data acquisition, including compact, modular and particularly high-scanning systems. The customer benefits from FKFS's many years of experience in the targeted, flexible and efficient use and operation of the technology and evaluation of the data.

Application Examples

Objektive measurement of driving dynamics parameters

Driving comfort tests


Determination of load spectra in customer-oriented driving profiles

Driving resistance measurements

Tire characterization

Movement sizes

Forces & Moments

Measuring rims

Measuring steering wheel

Component application with strain gages

Wheel load scales

Pressure instrumentation (wind excitation)

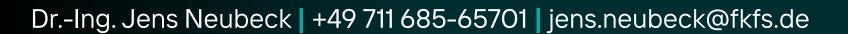
Driving Dynamics Instrumentation

FKFS has a comprehensive, mobile and up-to-date selection of instrumentation for extensive driving dynamics and vehicle testing. The equipment is constantly being expanded and modernized so that it always remains up-to-date and efficient. A selection of different systems is available for data acquisition, including compact, modular and particularly high-scanning systems. The customer benefits from FKFS's many years of experience in the targeted, flexible and efficient use and operation of the technology and evaluation of the data.

Application Examples

Objektive measurement of driving dynamics parameters

Driving comfort tests


Determination of load spectra in customer-oriented driving profiles


Driving resistance measurements

Tire characterization

Acoustic Measurement Equipment

FKFS has a wide range of standard and special acoustic measurement equipment, as well as the software tools needed to perform signal and modal analysis.

- artificial heads to record binaural sound signals and the possibility of aurally accurate reproduction
- Laser vibrometers and laser scanning vibrometers for determining, among other things of operating vibration modes of sound-emitting surfaces
- Microphone array systems for localizing sound sources in the vehicle interior and for investigating exterior noise
- Microphones (including surface microphones) and acceleration sensors (uni- and triaxial) for targeted sound and vibration measurements
- Torsional uniformity analysis (torsional vibrations)

Special Measurement Technology

FKFS special measurement technology is both within the drive train and far beyond. FKFS offers "everything from a single source" – from design, layout and production to the application of your measurement technology, including sensor or component-specific calibration. From the idea to the measurement result, you will find a competent contact at FKFS who will support you in the implementation of your development task or take it over completely for you.

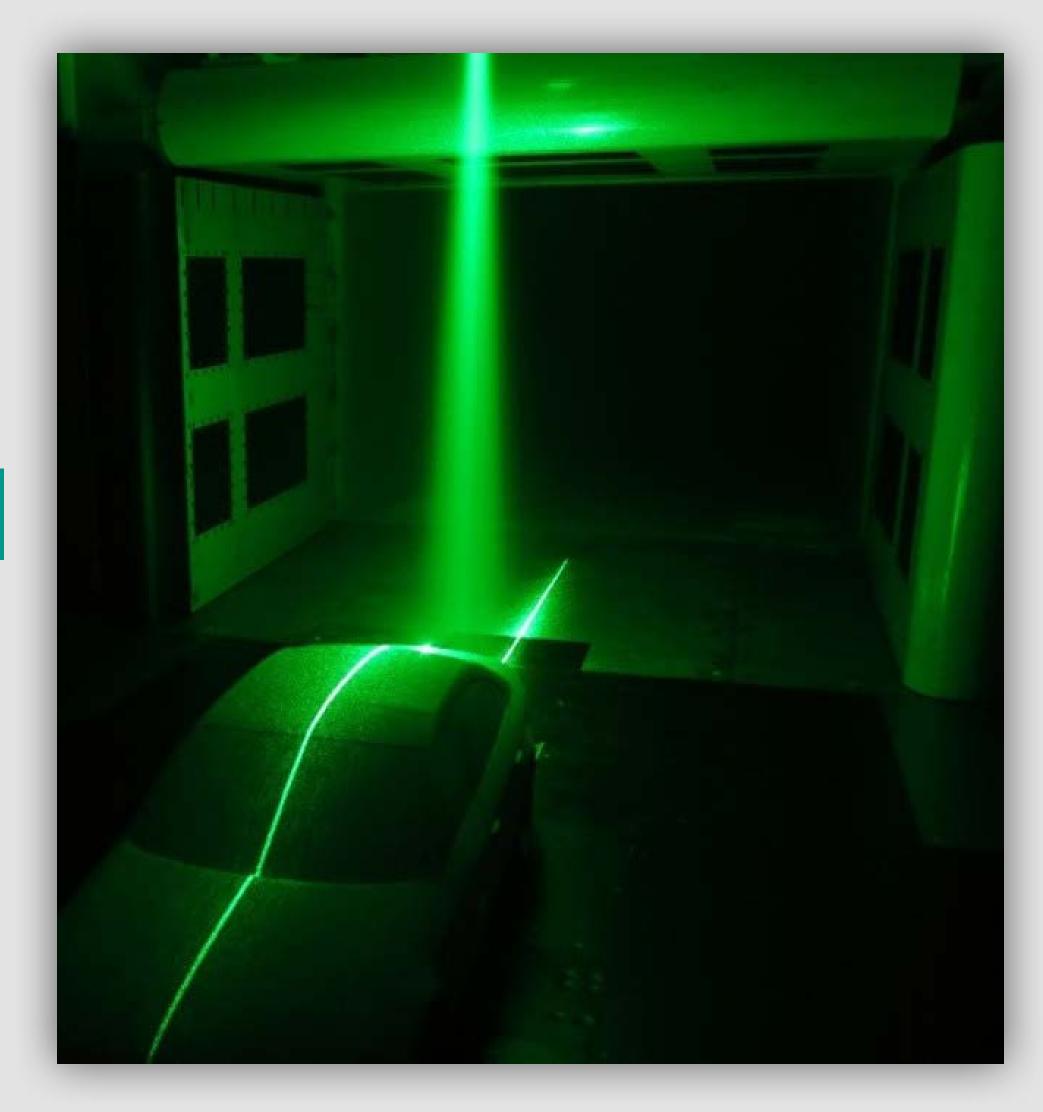
Application Examples

Distance measurement

Strain measurement

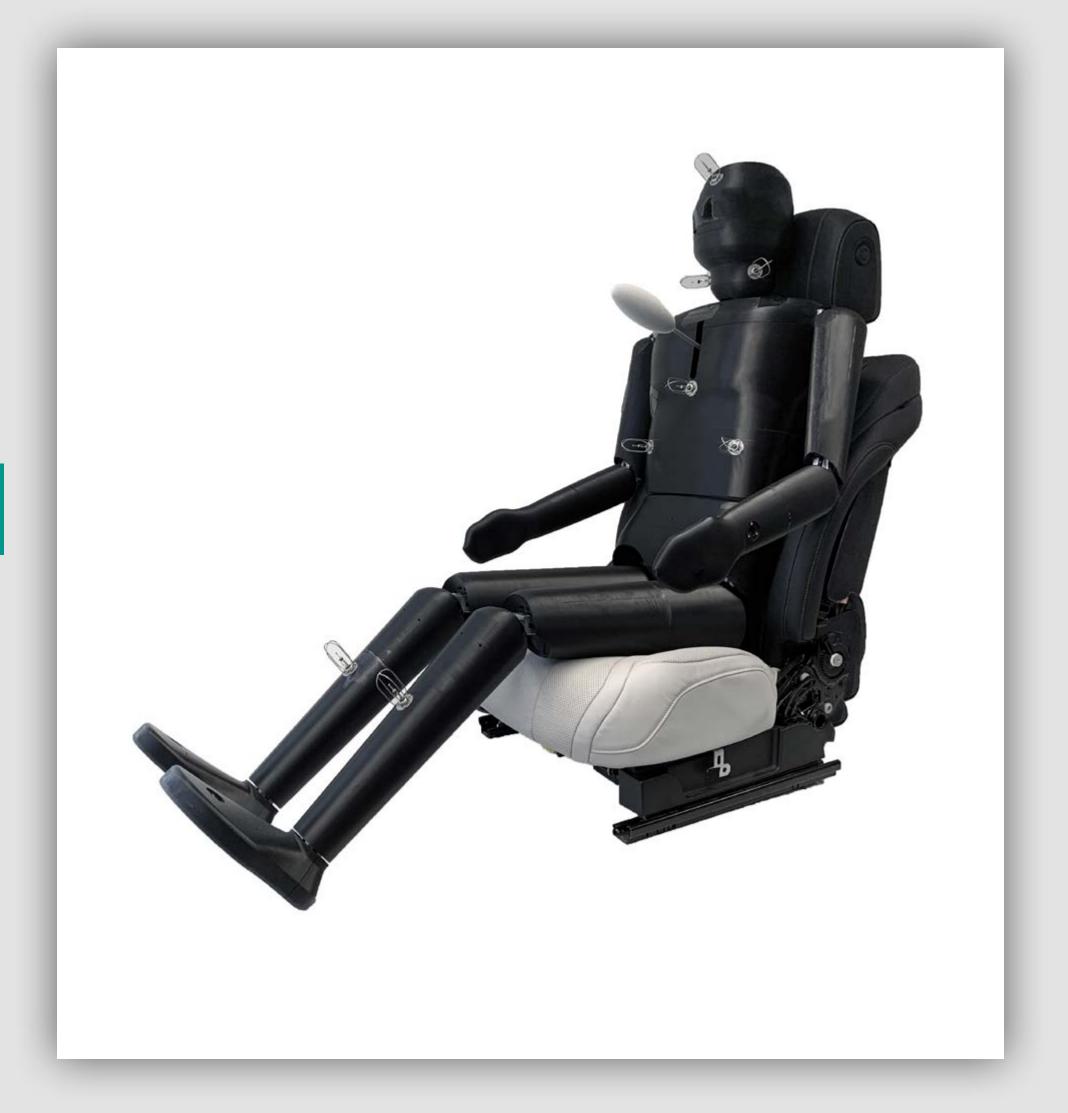
Fast surface temperature measurement

Component temperature measurement


Signal transmission systems

Digital application

Aerodynamic Measurement Systems


In the field of aerodynamics, FKFS has extensive measurement equipment for analyzing the flow around and through the vehicle.

In addition, we also offer the possibility of visualizing and quantifying flow situations in the vehicle cabin and components.

- Mobile systems for simultaneous pressure measurement at over 500 measuring points
- Multi-hole probes for the temporally high-resolution spatial determination of flow velocity and angle
- Specially developed radiator probes for cooling air volume flow measurements (see below) on the installed vehicle radiator
- 3D PIV system
- Evaluating the air flow rates on vehicle comfort seats with seat ventilation
- Recording the volume flow at air vents for conditioning the interior of the vehicle cabin

Thermal Comfort Manikin

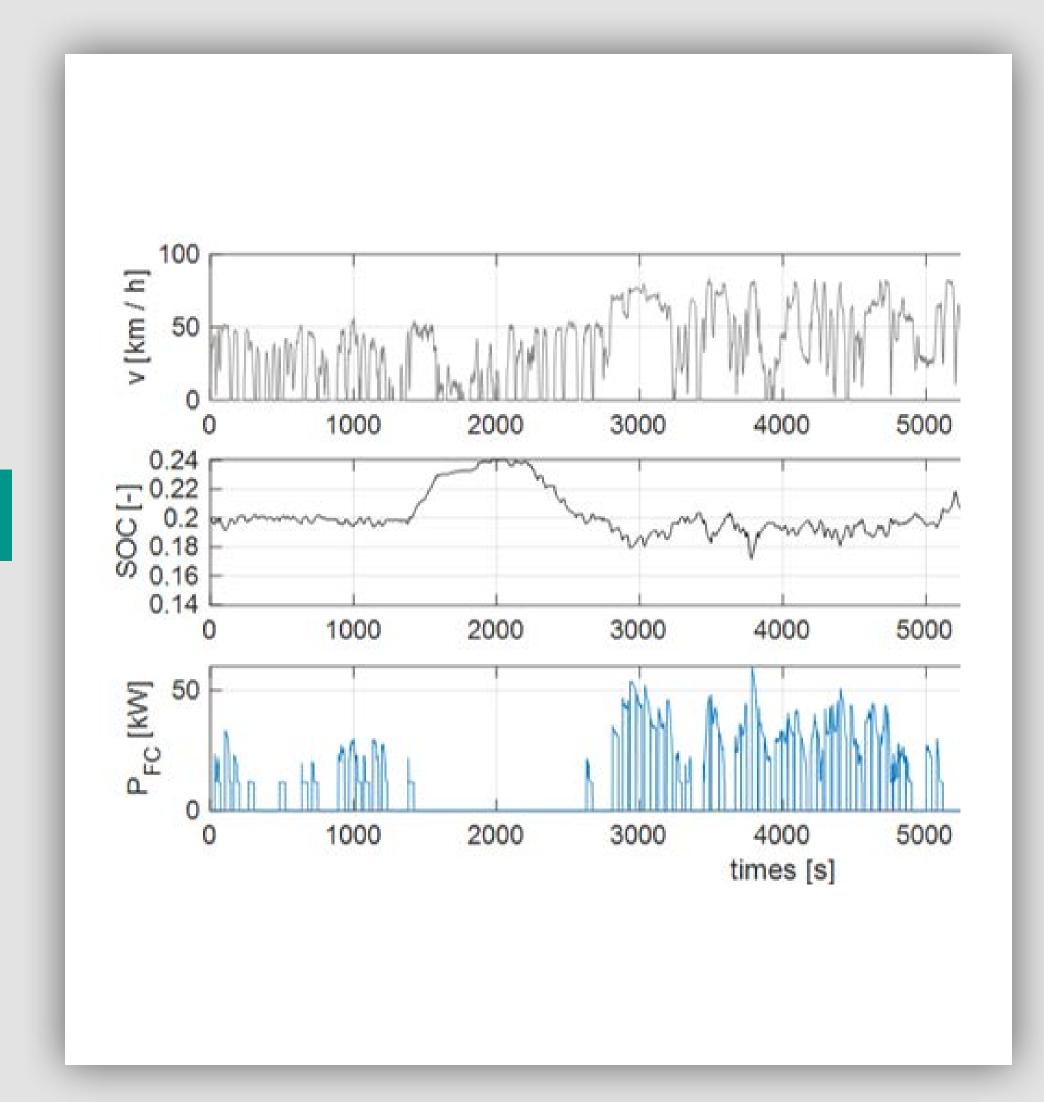
The FKFS Thermal Comfort Manikin can be used together with its digital twin at all stages of development to objectively assess passenger comfort.

The direct measurement of air velocities at selected parts of the body records the flow field in the vehicle cabin and enables isothermal investigations into draught-free conditions in convertibles.

Application Examples

Thermal comfort rating

Coordination of the HVAC control strategy


Draught control Cabrio

Measuring the temperature distribution

Draught assessment of Ventilation concepts

OD/1D-Simulation incl. longitudinal dynamics

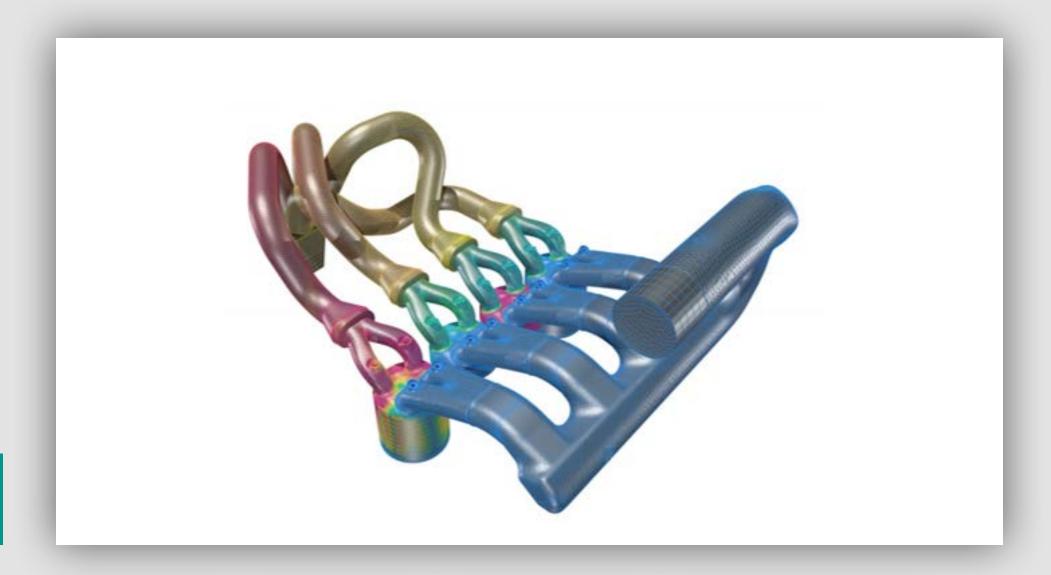
The selection and design of drive concepts for vehicles requires knowledge of the performance requirements and the dynamic requirements in different driving situations, the heat flows to be dissipated and the energy to be expended in each case and the associated emissions. For this purpose, longitudinal dynamics simulations are being developed at the FKFS on the basis of a modular simulation kit, which enables the rapid dimensioning and optimization of a wide variety of drives and topologies for a wide range of vehicle classes.

Application Examples

A wide variety of vehicles (motorcycles, cars, commercial vehicles, construction machinery, ships)

Various powertrains: BEV, (P)HEV, FCV, H₂/eF-ICE

Hybrid topologies: parallel, serial, power-split



Energy source: battery, H2, e-Fuel (Methanol, FT, NH₃, etc.) **②**

Basis for LCA

③

Motors

Fuel Motorsport Special motors

Development of all engine types (cars, trucks, ships, airplanes, etc.)

Flow dynamics, combustion, cooling, injection,
Multiphase flow etc.

Flexible network generation and motion simulation
(cylinders, valves, turbocharger, etc.)

Optimization of motor efficiency through calibration up to 50 %

3D/CFD-Simulation-QuickSim


With our powerful simulation tool QuickSim, a 3D CFD software developed in-house, we carry out precise virtual investigations that encompass the entire engine system.

Thanks to QuickSim's modular structure, you can respond flexibly to your specific requirements, while our in-house development resources – supported by our synergies between the OD department and our testbench capacities – enable you to implement your projects comprehensively, efficiently and quickly.

- Full engine and multicylinder simulation
- Pre-chamber and cylinder head optimization
- CFD + CHT + FEM
 Simulation coupling

- **✓**
- Every fuel displayable
- Injection simulation and PDA measurement
- Complete construction incl. component design

③

Motors

Fuel Motorsport Special motors

Analysis and application of different fuels
(liquid and gaseous)

Analysis of SMD, droplet distribution and spray development

Calibration of the injection by adjusting the measurements at the PDA laboratory

Optimization of the composition of different fuels

3D/CFD-Simulation-QuickSim

With our powerful simulation tool QuickSim, a 3D CFD software developed in-house, we carry out precise virtual investigations that encompass the entire engine system.

Thanks to QuickSim's modular structure, you can respond flexibly to your specific requirements, while our in-house development resources – supported by our synergies between the OD department and our testbench capacities – enable you to implement your projects comprehensively, efficiently and quickly.

- Full engine and multicylinder simulation
- Pre-chamber and cylinder head optimization
- CFD + CHT + FEM
 Simulation coupling

- **~**
- Every fuel displayable
- Injection simulation and PDA measurement
- Complete construction incl. component design

Motors

Fuel

Motorsport

Special motors

Active in MotoGP, F1, WRC, & high performance models from leading OEMs.

Optimized workflow for fast prototyping & fast simulations

Automated optimization of injector and injection

Advanced analysis: knock detection, mixture formation, engine dynamics, etc.

3D/CFD-Simulation-QuickSim

With our powerful simulation tool QuickSim, a 3D CFD software developed in-house, we carry out precise virtual investigations that encompass the entire engine system.

Thanks to QuickSim's modular structure, you can respond flexibly to your specific requirements, while our in-house development resources – supported by our synergies between the OD department and our testbench capacities – enable you to implement your projects comprehensively, efficiently and quickly.

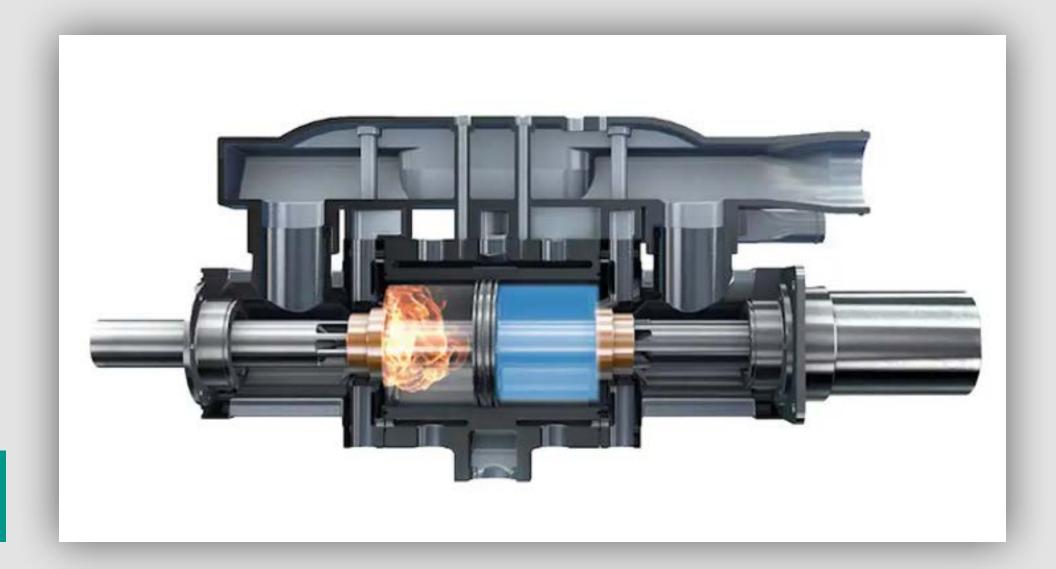
Application Examples

Full engine and multicylinder simulation

Pre-chamber and cylinder head optimization

CFD + CHT + FEM
Simulation coupling

Every fuel displayable



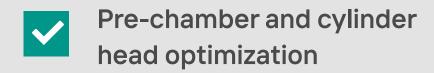
Injection simulation and PDA measurement

Complete construction incl. component design

Special motors Motors Motorsport Fuel

We are not limited to reciprocating engines: Wankel, Linear, Rotary, etc.

Experience in various disciplines: road transportation, energy, and aviation.


3D/CFD-Simulation-QuickSim

With our powerful simulation tool QuickSim, a 3D CFD software developed in-house, we carry out precise virtual investigations that encompass the entire engine system.

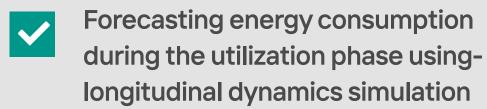
Thanks to QuickSim's modular structure, you can respond flexibly to your specific requirements, while our in-house development resources supported by our synergies between the OD department and our testbench capacities – enable you to implement your projects comprehensively, efficiently and quickly.

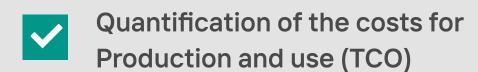
Application Examples

Every fuel displayable

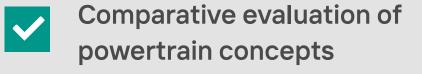
Injection simulation and PDA measurement

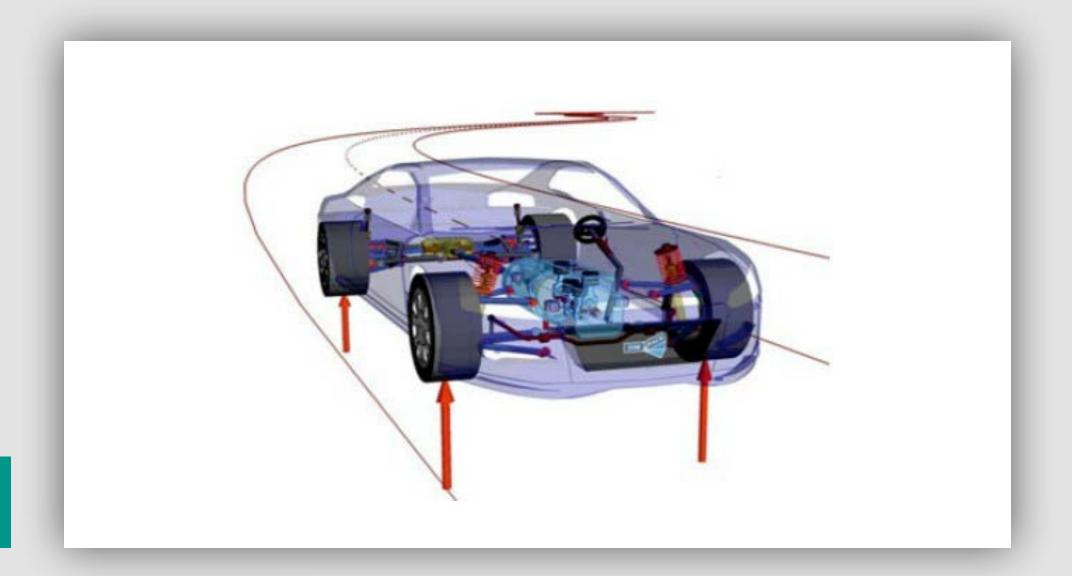

Complete construction incl. component design




Life Cycle Assessment/ Total Cost of Ownership

Especially in the development of new vehicle powertrain systems, the ecological consideration over the entire life cycle of the product is a central tool. Together with a consideration of the total costs for the user, important criteria are available for the comparative evaluation of vehicle concepts. FKFS offers detailed analyses (Life Cycle Assessment &Total Cost of Ownership) for this purpose, which are generated using tools that have been specially adapted to the balancing of vehicle powertrains.





Modeling

Complete vehicle models

Component models

Environment models

Models of active chassis systems

Digital Skills Development

The use of suitable models is of crucial importance for theoretical and simulative investigations. Application-specific modelling is necessary in order to achieve an optimum balance between mapping quality and parameterization effort. FKFS uses established simulation tools from the automotive industry and develops individual solutions as required.

Application Examples

Driving dynamics and driving comfort examinations

Chassis parameterization,

Virtual chassis design

Application

Homologation

Modular toolkit

Integration into customer-specific development environment

Target Cascading

Target Evaluation

Solution-Space-Method

Virtual Driving Characteristics Development

By integrating the driving characteristics into the virtual development process, vehicle concepts can be designed much more efficiently. This makes it possible to analyze and optimize the vehicle with respect to all customer- and brand-specific characteristics before a physical model exists. Virtual development processes allow the integration of innovative methods such as Al-based modeling and optimization processes, sensitivity analyses, and solution space methods. They support systematic and systems engineering-oriented vehicle development in all development phases - from early characteristics oriented chassis design to virtual application and homologation methods, as well as many digital twin-based analyses.

Application Examples

Design in early concept phase

Virtual Validation

Efficient vehicle and controller parameterization

Subjective-objective correlation

Virtual chassis design

Application

Homologation

Subjective application of driving comfort functions

Objective application in simulation

Integration of modern test benches

Highly efficient optimization algorithms

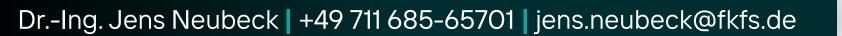
Black-Box-Approaches

Virtual Driving Characteristics Development

By integrating the driving characteristics into the virtual development process, vehicle concepts can be designed much more efficiently. This makes it possible to analyze and optimize the vehicle with respect to all customer- and brand-specific characteristics before a physical model exists. Virtual development processes allow the integration of innovative methods such as Al-based modeling and optimization processes, sensitivity analyses, and solution space methods. They support systematic and systems engineering-oriented vehicle development in all development phases - from early characteristics oriented chassis design to virtual application and homologation methods, as well as many digital twin-based analyses.

Application Examples

Design in early concept phase


Virtual Validation

Efficient vehicle and controller parameterization

Subjective-objective correlation

Virtual chassis design

Application

Homologation

Virtual development and virtual testing of environmental sensors for ADAS

Approval of software updates

Increased accuracy and reliability

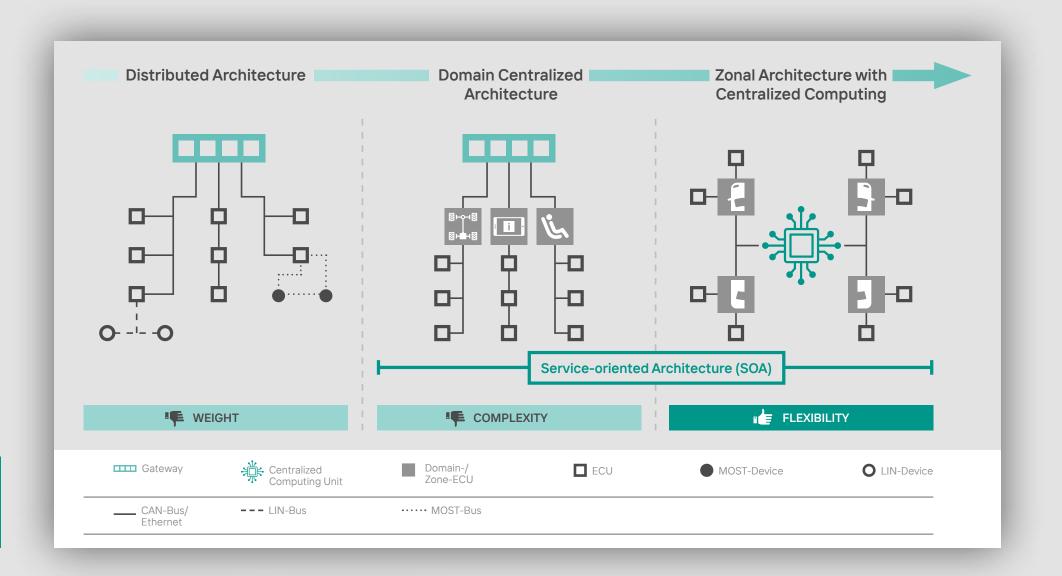
Virtual Driving Characteristics Development

By integrating the driving characteristics into the virtual development process, vehicle concepts can be designed much more efficiently. This makes it possible to analyze and optimize the vehicle with respect to all customer- and brand-specific characteristics before a physical model exists. Virtual development processes allow the integration of innovative methods such as Al-based modeling and optimization processes, sensitivity analyses, and solution space methods. They support systematic and systems engineering-oriented vehicle development in all development phases - from early characteristics oriented chassis design to virtual application and homologation methods, as well as many digital twin-based analyses.

Application Examples

Design in early concept phase

Virtual Validation



Efficient vehicle and controller parameterization

Subjective-objective correlation

Methods Aspects Complete vehicle simulation Virtual control units Model-based optimization Environment simulation

Simulative E/E Architecture Optimization

FKFS offers solutions for the design of optimized architectures that save costs, development and maintenance effort, reduce weight and resources and take into account the requirements for maintainability, flexibility and security.

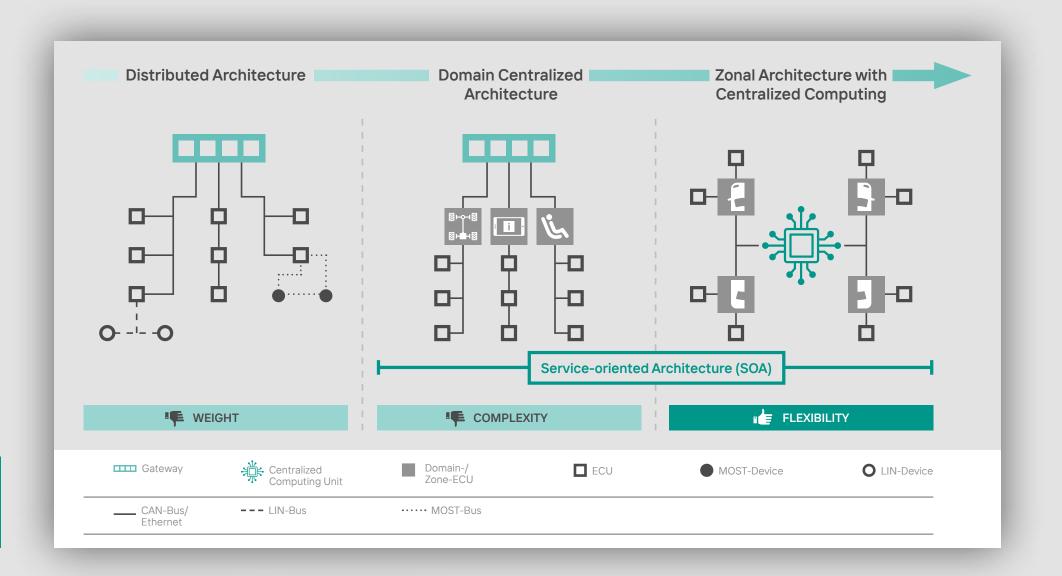
Application Examples

Variant comparisons

ASIL decomposition variations

Cable harness optimizations

HW/SW mapping optimizations

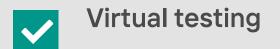


Virtual testing

... answering your questions

ISO 26262 Hardware costs Reliability Energy consumption

Simulative E/E Architecture Optimization


FKFS offers solutions for the design of optimized architectures that save costs, development and maintenance effort, reduce weight and resources and take into account the requirements for maintainability, flexibility and security.

Virtual Development

The interaction between the vehicle and its environment requires a comprehensive simulation of the overall system of vehicle and environment for the virtual development of vehicle functions. This can only be achieved through the combination and integration of a wide range of tools.

Application Examples

Generation of training data

Scenario generation

Experience of ADAS functions

FuSa/SOTIF-investigations

HIL applications

Virtual application